

Single-shot picosecond optical damage in Si, Ge and sapphire at 5 µm

- R. Agustsson, A. Murokh*, A. Ovodenko, R. Tilton; RadiaBeam Technologies, LLC.
 - E. Arab, B. O'Shea, J. Rosenzweig, UCLA
 - I. Pogorelsky, V. Solovyov, BNL

Outline

- Introduction to short pulse regime of optical breakdown (OBD)
- GALAXIE project and importance of mid-IR DLA
- 5 µm optical BD studies
- Results

Ionization mechanisms

- Photoionization has band gap dependence (multiphoton ionization vs. tunneling), described by the Keldysh theory
- Avalanche ionization is exponential and dominates ionization for long pulses

$$\gamma_K = \frac{1}{\lambda} \sqrt{\frac{cE_g}{r_e I}}$$

C.B. Schaffer, A. Brodeur and E. Mazur, Meas. Sci. Technol. 12 (2001) 1784-1794

photoionization

avalanche ionization

Breakdown mechanism

Short pulse BD is different from ns regime

Pulse length (T)	~ few ps or shorter	10s of ps or longer
lonization mechanism	Photoionization + avalanche	Avalanche
Energy transfer to lattice (phonons)	After the pulse	During the pulse
Damage mechanism	E-plasma absorption, ablation shock wave	Thermal damage (fracture, melting)
BD threshold (T)	~ flat	~ T^1/2
Surface quality	Not important	Very important
Multi-shot effects	Not important	Incubation (~x2)

SLAC data

- Short pulse experimental data is very limited
- A study was conducted in 2011 at SLAC to study short pulse BD in 0.8-2.2 µm range (K. Soong et al)

Material	Thickness	Bandgap	$\mathbf{F}_{th}[\mathbf{J/cm}^2]$
Al_2O_3	$1000 \mu \mathrm{m}$	9.9eV	4.90 ± 0.29
SiO ₂ (Quartz)	$1000\mu\mathrm{m}$	8.9eV	4.10 ± 0.50
ZrO_2/Y_2O_3	15nm	5-7eV	3.97 ± 0.16
HfO_2	<200nm	5.8eV	3.63 ± 0.36
Si_3N_4	100nm	5.1eV	$0.65 \pm .05$
Si	$1000 \mu \mathrm{m}$	1.1eV	$0.14 \pm .02$

GALAXIE Project

- DARPA funded project (RBT-UCLA-Stanford-PSU-BNL) to develop a room size hard X-ray FEL
- Based on mid-IR DLA @ 5.1 μm

Mid-IR DLA (5.1 µm)

- Advantages of DLA at mid-IR:
 - Larger admittance and dynamic aperture
 - Smaller wakefields, higher beam loading
 - Favorable scaling of fabrication tolerances
 - 10 x ponderomotive potential at the same intensity (smaller Keldysh parameter, no MPI)
- Known disadvantage additional laser R&D

5 µm BD studies at BNL

There is no prior picosecond breakdown data at 5 μm

Air-evacuated set-up

After initial data repeated experiment in vacuum

 Frozen surface wave rings and melting in the center

- Sapphire SEM shows similar pattern as Ge and Si.
- Multi-shot damage threshold is the same as single shot, but melting debris are massive
- Vacuum did not make a difference

- The threshold damage was determined by approximating the ablation area diameter to zero
- The threshold value is well reproducible (characteristics of short pulse regime)

Consistent with SLAC results but larger (without MPI)

Material	Germanium	Silicon	Sapphire
Band Gap (eV)	0.67	1.1	9.9
Damage Threshold [J/cm ²]	0.22 ± 0.02	0.29 ± 0.02	7.0 ± 0.3
Peak Fluence [J/cm ²]	0.44	0.58	14.0

Material	Thickness	Bandgap	$\mathbf{F}_{th}[\mathbf{J/cm}^2]$
Al_2O_3	$1000 \mu \mathrm{m}$	9.9eV	4.90±0.29
SiO ₂ (Quartz)	$1000 \mu \mathrm{m}$	8.9eV	4.10 ± 0.50
ZrO_2/Y_2O_3	15nm	5-7eV	3.97 ± 0.16
HfO_2	<200nm	5.8eV	3.63 ± 0.36
$\mathrm{Si}_{3}\mathrm{N}_{4}$	100nm	5.1eV	$0.65 \pm .05$
Si	$1000 \mu\mathrm{m}$	1.1eV	0.14 ± 02

2.3 GV/m @ 5 ps

Conclusion

- We report the first measurements of picosecond
 OBD damage at 5 µm for Si, Ge and sapphire
- The damage threshold was well defined and above 800 nm data (possibly due to lack of MPI)
- At 5 ps laser pulses the damage pattern was that of a short pulse regime
- Characteristic band gap dependence was observed with sapphire showing that it can support pulsed energies up to 7 J/cm²